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ABSTRACT

In this work, we consider a camera network where process-
ing is distributed across the cameras. Our goal is to recog-
nize actions of multiple targets consistently observed over the
entire network. To obtain consistent and better results we
need to properly fuse the action scores from multiple cam-
eras. There have been multiple works on distributed track-
ing and distributed data association for multiple targets in a
camera network. We can use the data association results and
tracking confidence scores to improve the action recognition
results. We propose a consensus based framework for solving
this problem in an integrated manner and with a completely
distributed camera network architecture. We propose a novel
method for weighting the action scores based on tracking con-
fidences and show how the cameras can reach a consensus
about the action of a target using belief consensus. We show
real life experiments and performance metrics with multiple
cameras and targets.

Index Terms— belief consensus, action recognition, dis-
tributed

1. INTRODUCTION

Recently, as multi-camera installations are gaining popular-
ity, the use of the information from multiple cameras in the
decision making process can help us push the limits of au-
tomated video analysis further. However, this calls for the
development of methods for analysis of the data coming from
multiple video feeds. In many applications, a distributed net-
work architecture is necessitated whereby video is analyzed
in a distributed manner over the entire network rather than
at a central server. An example could be a wireless network
with limited bandwidth, but which is easy to install and can
be mobile. In this paper, we consider such distributed cam-
era networks and propose a consensus-based framework that
is capable of performing action recognition.

In such multi-camera setups, there will be multiple tar-
gets and a single camera may only be capturing a portion of
the area covered by the entire camera network, i.e., a camera
only observes a subset of all the targets. In such scenarios,
knowledge of the cross-camera target correspondence (data
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Fig. 1. Overall system diagram depicting our proposed framework
for multi-target action recognition in distributed camera networks.
The data in the ellipses are generated using the JPDA-KCF algo-
rithm in [1] and utilized in our framework. The bidirectional arrows
represent the information exchange among the cameras.

association) and tracks are essential for the correct target-
specific analysis. Thus, our overall goal of distributed action
recognition in the camera network requires feedback from the
lower level tasks of distributed data association and tracking.
However, our framework is generally applicable to other dis-
tributed estimation tasks as face/gait/pose estimation.

There has been recent work on distributed data association
and tracking [1, 2]. In [1] a JPDA-KCF framework was pro-
posed where the Joint Probabilistic Data Association (JPDA)
step was used to solve the data association and a Kalman
Consensus Filter (KCF) was used to track targets. In our
framework, we use the tracking confidence scores obtained
by the JPDA-KCF algorithm, to weight our single camera ac-
tion recognition scores. Next, we incorporate a distributed
information fusion approach called Belief Consensus [3] to
fuse the weighted single camera action recognition scores.
The data association results from the JPDA-KCF algorithm
were used to fuse scores of appropriate targets together. The
flowchart of our entire framework is given in Fig 1.



Related Work

Several approaches are available for distributed data associ-
ation in the multi-agent systems literature [4, 1, 2]. Some
of the recent works on distributed tracking can be found in
[1, 5, 6, 7]. In our work, we utilize the distributed tracking
and data association scheme from [1].

In a distributed multi-agent system, different agents may
propose different description of an observed target, introduc-
ing inconsistency in the network. To maintain consistency,
there has to be a protocol running in each agent that makes all
the agents in the network to reach a consensus. The consensus
they try to reach is usually a function of their initial propos-
als. It may be the average [8] or the product [3] of the initial
proposals. As our fusion schemes needs to take the product of
the initial proposals (see Sec. 2.1 for details), we use the latter
consensus algorithm which is also known as Belief Consensus
[3]. A detailed review of consensus can be found in [9]. There
have been a number of interesting papers in computer vision
in the recent past that deal with consensus approaches [6, 10].

A review on multi-camera action recognition can be found
in [11]. As can be seen from there, most of the methods
on activity recognition using multiple cameras are centralized
schemes. In [6], a distributed action recognition scheme was
proposed, but unlike our approach, the final result depends
strongly on the network topology. In [12, 13, 14], different
frameworks were offered to cluster similar actions together.
However, our goal is to make use of the data association and
tracking results to improve action recognition results while
maintaining consistency throughout the network. In [15], the
authors proposed a method whereby after solving the data as-
sociation, they output the best result among all the cameras.
In real-life scenario, as one camera can only have a partial
view of a target, the fusion of the single camera recognition
scores may be better than the best result among the cameras,
which is a motivation for proposing the consensus approach.

2. DETAILED METHODOLOGY

In a network of NC cameras, let Oji be the observation from
camera Ci which is associated to target Tj and Oj be the col-
lection of all observations associated with Tj . The targets are
tracked and associated using the JPDA-KCF scheme in [1].
The necessity of calibration depends absolutely on the track-
ing and data association scheme. For our work the JPDA-
KCF scheme was implemented in a calibrated scenario. Let
Fj be a vector of length NC where Fj(i) is the association
strength of Oji with Tj (see Sec 2.2). Also, let yj be the vari-
able of action classes for target Tj . Each camera processes the
tracked video of an observation for a few frames1 and com-

1Finding the optimum size and placement of the time window for action
recognition is still a very challenging problem. We do not focus on this issue;
rather we divide the entire video into windows of the same predefined size.

putes the probabilities for each action class which can be de-
noted as P (Oji |yj).

2.1. Information Fusion

Our goal is to compute P (yj |Oj , Fj), the posterior probabil-
ity of the action classes, given all the observations associated
with Tj and the association strength vector Fj . Using Bayes’
law we can write,

P (yj |Oj , Fj) =
P (Oj |yj , Fj)P (yj |Fj)

P (Oj |Fj)
= γP (Oj |yj , Fj)
= γP (Oj1, O

j
2, ..., O

j
NC
|yj , Fj) : ∃Oji

= γ
∏
∀i:∃Oj

i

P (Oji |yj , Fj) (1)

The second step comes from the assumption of uniform2 prior
distribution P (yj |Fj), over the action classes, and also from
the fact that P (Oj |Fj) is constant3 for all action class. Thus,
we can combine these two factors together into a normalizing
constant γ. The fourth step comes from the independence
condition 4 of Oji .

Having (1), our next step would be to weight the likeli-
hoods using tracking confidence scores and then seek a dis-
tributed implementation for fusion.

2.2. Weighting Single Camera Recognition Scores with
Tracking Confidences

In reality, there will be noise in image features, resulting in
noisy tracks and data associations. The tracking module in [1]
gives confidence scores in the tracks (the covariance matrix).
Intuitively, the less the confidence of a track, the less certain
the fusion result should be for an action label and should tend
more towards uniform distribution over the action labels. In
addition to that, the further an associated observation is from
the mean of the track on the ground plane, the less it should
contribute in the fusion. We can incorporate both these ideas
by choosing the Mahalanobis distance as our distance metric.
Let xji be the position vector of an observation on the ground
plane, pj be the estimated position sub-vector and Ej be the
position covariance sub-matrix for Tj acquired from the dis-
tributed tracking step in [1]. Thus, the Mahalanobis distance
between Oji and Tj is:

2The prior does not necessarily have to be uniform, because the action
recognition scores from the previous time window can be propagated through
this prior using learnt transition probabilities between different action classes
[16].

3As P (Oj |Fj) does not have yj in its argument, it is constant for all
action labels. Thus, for a specific Fj , P (Oj |Fj) is a constant scalar term.

4When action recognition features are extracted properly from raw obser-
vations, the effect of factors like appearance, shape, motion etc., other than
action class, is eliminated. Thus, given the action class, the features (which
we are calling observations in our context) become independent of each other.



D(Oji , Tj) =
√

(xji − pj)TE
−1
j (xji − pj) (2)

Based on this distance measure, we can compute our associa-
tion strength vector Fj using the following formula:

Fj(i) =
{
e−αD(Oj

i ,Tj) if ∃ Oji
0 otherwise

(3)

Here α is an empirically set parameter which controls the fall-
off of the exponent. Next, we weight P (Oji |yj) with Fj(i) to
get P (Oji |yj , Fj) by using weighted mixture of distributions
as,

P (Oji |yj , Fj) = Fj(i)P (O
j
i |yj) + (1− Fj(i))

−→
1

L
(4)

Here L is the number of trained action classes, thus
−→
1
L is ac-

tually a uniform distribution over the action classes.

2.3. Distributed Implementation through Belief Consen-
sus

Belief consensus states that, in a network of N agents, if each
agent Ci has an initial proposal πi, they can asymptotically
reach the consensus of (

∏
iπi)

1
N (the geometric mean of the

initial proposal), by iteratively updating their own proposals
with the proposals of their neighbors using the formula:

πi(k + 1) = πi(k)

 ∏
jεNCi

πj(k)

πi(k)

λ

(5)

Here, NCi
is the set of the neighboring cameras of Ci and

k is the iteration number. The proof of this formula and the
analysis of the convergence speed parameter λ can be found
in [3]. Thus, we have

lim
k→∞

πi(k) =
(∏

i
πi(0)

) 1
N

(6)

So, if all the nodes in the network know the number of cam-
eras (NTj

)5 observing target Tj , after some iterations, they
can reach to a consensus about the action score of Tj . For
each target Tj , each camera has to run a separate consensus
scheme. We set the initial proposals of Ci for Tj as,

πji (0) =
{ P (Oji |yj , Fj) if Fj(i) 6= 0
−→
1 otherwise

(7)

As Fj(i) = 0 means there are no observations at Ci associ-
ated with Tj ; for such a camera, setting the initial proposal to
−→
1 will enable the product consensus to run unaffected by the

fact of a camera not observing a target. After convergence,
we have to take the NTj

th power of πji (k) and normalize to
get the actual consensus result for target Tj as necessitated by
(6) and (1). Thus, all the cameras reach to a consensus on the
action scores of each of the target present in the network.

5NTj
can be computed along with the data association and tracking by

enumeration. NTj
will change only when the data association changes. Thus

when a camera detects a change in its own data association, it can send an
update message throughout the entire network of its new association and thus
each camera will know NTj

for all the targets.

sit walk pick hshk hug wave
Best Cam 0.49 0.29 0.53 0.49 0.64 0.77
Method in [6] 0.49 0.33 0.53 0.53 0.59 0.70
Our Method 0.67 0.42 0.73 0.64 0.84 0.87

Table 1. Each row shows the probability of correct match for differ-
ent actions using a particular method. The first row holds the statis-
tics for the case where the single camera with the highest probability
of correct match was selected using ground truth.

3. EXPERIMENTAL EVALUATION

To validate our proposed approach for multi-camera action
recognition, we carried out experiments on UCR multi-
camera data-set [17]. UCR data-set is comprised of 2.5
hours of multi-view videos. 4-8 cameras are used to cover
an area where 2-10 people are performing various real-life
actions. We used 10 minutes of this data-set for training and
another 30 minutes for testing.

The cameras were calibrated and the targets were detected
using person detectors. Then they were tracked and associ-
ated using the JPDA-KCF method in [1]. For the simplicity of
our experiment, only the video clips with actions performed
according to our trained labels were used. We used the Bag-
of-Words approach on top of Spatio-Temporal Interest Point
(STIP) features and used Support Vector Machines for classi-
fication. Our single-view action recognition scheme is similar
to [18]. We trained our system for six different action classes
i.e. 1 - Sit, 2 - Walk, 3 - Pick, 4 - Handshake, 5 - Hug and 6
- Hand-wave. Next, we assume a loosely connected network
topology, where a camera is connected to at most two other
cameras. The more connected the network gets, the faster
the consensus algorithm converges. After getting the single
camera recognition scores, we weight them according to our
scheme in Sec 2.2. Next, using our consensus scheme in Sec
2.3, we fused the action scores for each of the targets in each
of the cameras.

The results achieved in different iterations of the consen-
sus scheme is shown in Fig 2. We assumed convergence af-
ter 20 iterations. We show the statistical performance of our
method and compare it with the average consensus scheme of
[6] in Table 1. From the table, it is apparent that our method
performed well. In the experiments, 88% of the time the
most probable action label in the fusion result was the actual
ground truth action, whereas for single cameras, it was only
30% of the time.

In the context of comparing our work against centralized
multi-camera activity recognition schemes, we note that the
belief consensus approach is guaranteed to converge to the
posterior estimate of (1) as proved in [3], which is essentially
computing the action label probabilities given the observa-
tions. Thus, given a feature set which leads to a certain per-
formance in the centralized case, we show how to implement
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Fig. 2. In this figure, we show an example from our experiment.
Each row in this figure represents each of the five cameras in the
network and two people are tracked throughout the entire network.
The first column represents the video feed from different cameras.
The next two columns show the initial proposals of each cameras
for each targets. These are the weighted single camera action recog-
nition scores. As C1 did not observe any of the targets, it started
with a vectors of ones. The next two columns show the updated pro-
posals after 5 iterations of belief consensus. Note how the cameras
converge towards the same decision for each target. The last two
columns shows the actual score computed by the fusion equation
(1).

it in the decentralized situation without any degradation in
performance.

4. CONCLUSIONS

In this paper, we investigated the utilization of multi-target
tracking and data association to improve action recognition
results in a distributed framework. While there has been re-
cent work on consensus approaches for various computer vi-
sion problems, our work considered the integration of data
association and tracking to achieve a higher level goal (action
recognition) in a distributed framework using the belief con-
sensus algorithm. We showed real life experiments and per-
formance metrics with multiple cameras and targets. One of
the research directions that remain to be explored is the inte-
gration of auto-calibration of the camera network in dynamic
environments.
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