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ABSTRACT

Distributed algorithms in the sensors networks community
usually require each sensor to have its own measurement. In
practice, this constraint can not always be met. For example,
in a camera network, all cameras might not observe a particu-
lar target as cameras are directional sensors and have a limited
field-of-view (FOV). Moreover, different sensors might pro-
vide different quality measures related to different elements
of the measurement vector depending on various factors as
directionality, occlusion etc. This requires the designing of
a new type of distributed algorithm that considers the quality
and/or absence of measurements. In this paper, we present a
distributed algorithm to compute the maximum likelihood es-
timate of the state of a target viewed by the network of cam-
eras, taking into account the above-mentioned factors. We
provide step-by-step derivation along with theoretical guar-
antee of optimality and convergence of the method. Exper-
imental results are provided to show the performance of the
proposed algorithm.

Index Terms— distributed estimation, camera network,
naive node, consensus

1. INTRODUCTION

In recent years, multi-camera installations have gained im-
mense popularity in various applications. These cameras are
usually connected through a network to a centralized data pro-
cessing unit. But, as the network size increases, the require-
ment for network connections and processing power on the
centralized unit grows rapidly. Also, failure of the central
node dictates the failure of the entire system. Decentralized
and distributed schemes can be used to cope with these prob-
lems. Additionally, distributed vision systems can enhance
or enable operations in places without a pre-existing commu-
nication infrastructure, like search and rescue operations or
remote locations. Distributed algorithms are naturally appro-
priate for smart sensor networks where each node does the
processing of its raw observation to generate processed mea-
surement vectors.

Consensus algorithms are one of the many types of dis-
tributed algorithms where each node communicates with its
neighboring nodes with its own state information. Then each
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node updates its own states using information from its neigh-
bors’ states and by doing so iteratively, all the nodes can come
to a consensus. The consensus is usually a function of the
states. Thus, many centralized multi-observation estimation
tasks can be implemented in a distributed scenario using con-
sensus algorithms.

In some practical cases, a node in a sensor network may
not observe a target (due to limited field of view (FOV) or
occlusion). Moreover, due to measurement noise, partial oc-
clusion and directionality of a sensor, the measurements in
some nodes can be poor (high measurement covariance). In a
consensus based approach, a node shares its measurements
only with its immediate network neighbors. Thus, a node
has direct access only to the measurements in its local neigh-
borhood (consisting of the node and its immediate network
neighbors). If in a node’s local neighborhood, there are only
poor or no measurements about a target, the node becomes
naive about that target. We will refer to this issue of having
insufficient measurement information in a node’s local neigh-
borhood as the naivety of a node.

In sensor networks, estimating the state from multiple
measurements is necessary in many applications. The pres-
ence of naive nodes makes the distributed estimation task
more challenging which motivates us to propose a general-
ized consensus algorithm, applicable in any sensor network
which is particularly important for camera networks. In this
paper, we seek the distributed implementation of the maxi-
mum likelihood (ML) estimate of the state of a target viewed
by a camera network in this general scenario, accounting for
the presence of naivety.

1.1. Related works

Multi-camera networks is a rapidly growing field with appli-
cations to security, smart homes, multimedia, and environ-
mental monitoring. A detailed review of the fundamentals,
algorithms and applications of multi-camera networks can be
found in [1, 2].

Distributed algorithms have been applied to camera net-
works. In [3], game theory-based distributed optimization
algorithms for dynamic camera network reconfiguration and
consensus algorithms for scene analysis was proposed. Dis-
tributed tracking approaches were described in [4]. In [5], the
authors showed how centralized algorithms based on linear al-



gebraic operations such as SVD, least squares, PCA, GPCA,
3-D point triangulation, pose estimation and affine SfM can
be made distributed by using simple distributed averages. In
[6, 7] distributed multi-camera tracking schemes were pro-
posed.

One of the popular distributed estimation approaches is
based on consensus schemes [8]. In a distributed multi-agent
system, different agents may propose different descriptions
of an observed target, and agents might need to reach to a
consensus. There has to be a protocol (called consensus al-
gorithm) run by each agent that makes all the agents in the
network reach a consensus. The consensus they try to reach
is usually a function of their initial proposals. For example in
[9], the average consensus algorithm is proposed which can
compute the arithmetic mean of the initial proposals in a dis-
tributed manner.

2. PROBLEM FORMULATION

Consider a sensor network with N cameras. The communi-
cation in the network can be represented using an undirected
graph G = (C,&). The set C = {Cy,...,Cn} contains the
vertices of the graph and represents the cameras. The set £
contains the edges of the graph which represents the available
communication channels between different cameras. Also,
let N; be the set of cameras having a direct communication
channel with camera C; (shares an edge with C;).

In this paper, we are interested in estimating each targets’
current state. For example, a target’s state can be its posi-
tion and velocity or pose with respect to the global reference
frame. Let us denote the state vector as x € RP. For a posi-
tion estimation task, this state vector might be the 2d position
and velocity on the ground plane. Each node processes its raw
observations and gets a noisy measurement that is a function
of the state x. For a position estimation task, a measurement
might be the position of a target in a camera’s pixel coordinate
system'. The processed measurement z; of a target at node C;
can be expressed using the following observation model,

z; = Hix +v; (D

Here z; € R™, H; is the observation matrix for node C; and
measurement noise v; is assumed to be N (0, R;). We will
use the information form of the estimators. Thus, we will
mostly operate on inverse covariance matrices (also known
as information matrices). Note that the information in z; is
W,; = HITR;lHi and the information form of the measure-
ment is y; = HYR; 'z;. As consensus algorithms require
each node to have an initial state, if a camera does not have a
measurement, we need to initialize z; to some value. In such
case, we will use a zero vector for z; and R, I will be set to a
zero matrix (due to zero information content).

'In this paper, we intend to solve only the state estimation task, assuming
that the data association for different targets (in case of multiple targets) is
provided.

The collection of all measurements of a target from all
cameras can be expressed as,

z. = Hx+ 1, 2)
Here, z. = [z], 23 ,...2%]7 is the stack of all measurements

in the network. H. = [HT , HT,.. . H%]7 is the stack of all
the observation matrices.

We assume the measurement noise to be uncorrelated
across cameras. Thus, the measurement covariance matrix
will be block diagonal as,

R, 0 ... O
0 Ry,
0 .. Ry

Here, R; € R™*™ and R, € RN™*Nm,

Next, we will review the average consensus algorithm
which will be utilized in the distributed implementation of
our proposed estimator.

2.1. Average consensus: Review

Average consensus [9] is a popular distributed algorithm to
compute the arithmetic mean of some values. Suppose, we
have some values {z}~ ; at N nodes and we are interested
in computing the average of these values i.e. % Ef\;l x;, in
a distributed manner. Here, x; can be a scalar, a vector or a
matrix.

In average consensus algorithm, each node initializes its
consensus state as z; (0) < x; and runs the following protocol
iteratively

.%‘i(k‘):flli(k‘—l)-‘rﬁ Z(J/’j(k—l)—.’)?i(k—l)). (4)
JEN;

At the beginning of iteration &, a node C; sends its previous
state ;(k — 1) to its immediate network neighbors C; € N;
and similarly receives the neighbors’ previous states. Then it
updates its states using (4). By iteratively doing so, the values
of the states at all the nodes converge to the average of the
initial values. Here € is the rate parameter which should be
chosen between 0 and ﬁ, where A, is the maximum
degree of the network graph G. More information about aver-
age consensus and about the rate parameter € can be found in
[9].

Next, we will derive our distributed maximum likeli-
hood estimation (DMLE) algorithm utilizing this consensus
scheme.

3. DISTRIBUTED MAXIMUM LIKELIHOOD
ESTIMATION (DMLE)

In this section, first we will state the maximum likelihood es-
timator for our problem in a centralized scenario and then de-
rive the distributed implementation of it.



The centralized maximum likelihood estimate of x is
given by,

Xy = (HIR;'H,) 'H!R]'z. (5)

As, R, is block diagonal, R is also block diagonal.
Thus, we can write,

N N
H/R;'H. =) H/R/'H;=> W, (6)
i=1 =1
N N
wl IR S HIRm =Yy ()
i=1 =1

Now, using (6) and (7) in (5) we get,

(E) &

Xmrp =
N -1 N
_ > i1 Wi dim1 Yi (8)
N N
and, Cov(kyp) = (HIR;'H.)™?

N —1
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Now, according to the definitions of W; and y;, each node
C;, can compute W; and y; from its own measurement and
model parameters. According to (8), the ML estimate is the
ratio of the average y; and average W,. It is theoretically
guaranteed that using the average consensus algorithm as de-
scribed in Sec 2.1, each node can asymptotically compute the
average y; and average W,. This, along with the expression
in (8) guarantees that we can asymptotically compute the cen-
tralized ML estimate of (5) using our proposed framework.
As ML is an optimal estimator for our problem, and we guar-
antee to asymptotically compute the ML estimate, our estima-
tor is also an optimal estimator for the problem. The overall
implementation of this method is shown in Algorithm 1.

Thus, in this section, we have derived the DMLE algo-
rithm to estimate in a distributed manner the maximum like-
lihood of the state of a target at each node. We also theoret-
ically guaranteed that our algorithm is an optimal estimator
which asymptotically converges to the centralized ML esti-
mate of (5). In the next section, we will experimentally eval-
uate our method.

4. EXPERIMENTS

To validate our proposed approach for distributed maxi-
mum likelihood estimation, we carried out a simulation in
a 500x500 unit area. The area was covered with 5 cameras
where each can observe a certain portion of the entire area.
The FOVs of the cameras are shown in blue triangles in Fig
1. It was assumed that the cameras were connected using a

Algorithm 1 DMLE at node C; when new measurement arrives

Input: Observation matrix H;, measurement z;, measurement covariance
matrix R;, rate parameter € and number of iterations K.

1) Compute initial fused information matrix and vector

W,(0) = HIR; 'H; (10)

yi(0) =H{R; 'z (11
2) Perform average consensus on W;(0) and y; (0) independently
fork=1to Kdo
a) Send W;(k — 1) and y; (k — 1) to neighbors j € N;
b) Receive W ;(k — 1) and y; (k — 1) from neighbors j € N
c¢) Update:

Wi(k) =Wi(k—1)+ey (Wi(k—1)-W;(k—1)) (12)
JEN;

yilk) =yilk—=1)+e Y (yj(k—1)—yi(k—1))  (13)
JEN;
end for

3) Compute ML estimate and Information matrix

% = W;(K) ly(K) (14)

Cov(%;) = (NW,(K)) ™" (15)

4) Output: ML estimate X; and covariance C'ov(X;).
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Fig. 2. In this figure, the root mean square error (RMSE) for differ-
ent methods averaged over 10000 simulation runs are shown. The
first bar is the RMSE for the individual measurements. The second
and third bars shows the RMSE of the estimates for both the average
consensus and DMLE methods. This clearly shows that the RMSE
is much less in our method than the average consensus algorithm and
is also less than the individual measurements (first bar).
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Fig. 1. In this figure, an example from our simulation is shown. The region of surveillance is drawn five times, once for each camera. Here,
the green circles (()) denote the ground truth position and the blue circles () denote the observations at each camera when the target is in
the camera’s FOV (blue triangle). The black asterisks (x) denote the position estimates from the average consensus algorithm and the red
asterisks () denote the estimates from our proposed algorithm (DMLE). From the figure it is evident that the DMLE estimates () are much

closer to the ground truth (()) than the average consensus estimates ().

peer-to-peer topology as Cy <+ Cy <> C3 <> Cy < C5. A
target appeared at random locations in the area where at least
one camera could observe it. A Gaussian noise of (0, aI)
was added to the actual position to generate each observation.
« was randomly chosen from 1 to 1000 at different simulation
runs for different cameras. Total number of iterations K, was
set to 10 and the consensus rate parameter ¢, was set to 0.2.

For a particular simulation run, at first the position was es-
timated as the average of the measurements (not considering
the measurement covariances) using average consensus algo-
rithm. Then it was separately estimated using the proposed
DMLE algorithm.

In Fig 1, an example from our simulation is shown. From
the figure it is evident that the DMLE results are much closer
to the ground truth than the average consensus results. In a
consensus scheme, it is necessary that each node has its own
initial state. Thus, if the measurement covariances are not
incorporated in the estimation process, the nodes which had
no measurements, introduced a bias towards the arbitrarily
set measurement values in such nodes. In contrast to this,
our maximum likelihood estimator in (5) is an unbiased esti-
mator, which is essentially computing the weighted average
instead of the average. In Fig 2, the root mean square error
(RMSE) for different methods are shown. This clearly shows
our method outperforms other methods.

5. CONCLUSION

In this paper, we have presented a novel algorithm (DMLE)
to compute the maximum likelihood estimate of the state of a
target in a camera network in a distributed framework. The-
oretical guarantee of optimality and convergence was pro-
vided for the method. Experimental results were provided to
compare the estimation accuracy with other methods which
showed that our method performed much better than other
methods.
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